
DOI: 10.1007/s10955-005-5462-2
Journal of Statistical Physics, Vol. 120, Nos. 1/2, July 2005 (© 2005)

Efficiency of the Incomplete Enumeration Algorithm
for Monte-Carlo Simulation of Linear and Branched
Polymers

Sumedha1 and Deepak Dhar1

Received August 29, 2004; accepted March 29, 2005

We study the efficiency of the incomplete enumeration algorithm for linear and
branched polymers. There is a qualitative difference in the efficiency in these
two cases. The average time to generate an independent sample of configura-
tion of polymer with n monomers varies as n2 for linear polymers for large n,
but as exp(cnα) for branched (undirected and directed) polymers, where 0<α<

1. On the binary tree, our numerical studies for n of order 104 gives α=0.333±
0.005. We argue that α =1/3 exactly in this case.

KEY WORDS: Self-avoiding walks; lattice animals; Monte-Carlo methods for
polymers; percolation on trees.

0. INTRODUCTION

Monte-Carlo(MC) simulations are a very important tool for studying
polymers, as exact results are hard to come by, and are available only for
the simplest models. Broadly speaking, MC algorithms fall in two clas-
ses:(1) the Metropolis type and the genetic type. The Metropolis type algo-
rithms generate a time sequence of configurations of the polymer using
a Markovian evolution. The transition probabilities from one configura-
tion to the next are so chosen that the time average of properties of
the system are equal to that from the desired distribution. These may
use local moves as in Rouse dynamics,(2) bi-local moves as in the repta-
tion algorithm(3) or nonlocal moves as in the pivot(4) and cut-and-paste(5)

algorithms. There is inevitably some correlation between different config-
urations generated in an evolution. These algorithms become inefficient if

1Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha
Road, Mumbai 400005, India; e-mail:{sumedha,ddhar}@theory.tifr.res.in

71

0022-4715/05/0700-0071/0 © 2005 Springer Science+Business Media, Inc.

72 Sumedha and Dhar

the correlation time becomes very large, e.g. when simulating polymers in
a random medium.

In the genetic algorithms, one randomly generates a small random
number of configurations in each run. The probability that a given con-
figuration is obtained in a run is proportional to the desired distribu-
tion. One repeats the process for many runs to get a large sample. Exam-
ples of this type are the enrichment(6) and the pruned-enriched Rosenbluth
method(PERM)-like(7) algorithms.

While there have been many studies of linear polymers using vari-
ous MC techniques like pivot,(4,8,9) PERM,(7) Berreti-Sokal algorithms,(10)

branched polymers have been less studied. Algorithms used for simulating
linear polymers can often be adapted for branched polymers, but they are
usually found to be less efficient. For example, in the pivot algorithm, the
acceptance probability of the transformed configuration is found to be much
less for branched polymers than for linear polymers.(11) The algorithm does
not perform well for branched polymers adsorbed on a surface.(12) Similarly
the PERM algorithm seems to work less well for branched polymers than
for linear polymers.(13) Incomplete enumeration(IE) is an algorithm belong-
ing to the genetic class of algorithms. It has been used for simulating linear
polymers,(14) and for branched polymers.(15,16)

A better understanding of the efficiency of MC algorithms for gener-
ating branched polymers seems desirable. We will study IE for linear and
branched polymers in this paper. We choose the average computer time
Tn needed to generate one statistically independent sample of desired size
n as a reasonable measure of efficiency of the algorithm. The dependence
of Tn on n is very different for IE for linear and branched polymers. We
find that for the linear polymers Tn ∼kn2, but for branched polymers Tn ∼
exp(knα), 0<α <1. We also discuss an improvement of IE, which we call
improved incomplete enumeration (IIE), in this paper. We find that the
improvement does not change the asymptotic dependence of Tn on n in
general. The IIE works better than IE, but the difference is only in the
coefficient k.

The plan of the paper is as follows. We describe the IE algorithm in Section
1. In Section 2 we discuss the efficiency criterion for MC algorithms in general,
and for IE in particular. In Section 3 we study the efficiency of IE analyti-
cally for some simple cases where the genealogical tree has a simple recursive
structure. We also study IE for self-avoiding walks (SAW) in this section. In
all cases we find that Tn ∼n2. In Section 4 we propose an improved version of
the IE algorithm, IIE. For simple random walks Tn =n for the IIE algorithm
as compared to Tn ∼ n2 for IE. For SAWs, IIE is significantly more efficient
and becomes better in higher dimensions, but asymptotic efficiency remains
the same and Tn ∼ adn2 in all dimensions, though the coefficient ad decreases

Efficiency of the Incomplete Enumeration Algorithm 73

with increasing dimension. In Section 5 we study IE for branched polymers
or lattice animals on a binary tree. We give heuristic arguments and numerical
evidence to show that Tn ∼ exp(kn1/3) for large n for branched polymers on a
binary tree. We also study IE and IIE numerically for undirected and directed
branched polymers on a square lattice in this section. We find that in both cases
Tn ∼ exp(knα), 0<α <1. We summarise our results in Section 6.

1. THE INCOMPLETE ENUMERATION ALGORITHM

The SAW and lattice animals(LA) are simple lattice models of linear
and branched polymers in dilute solutions. In order to study the thermo-
dynamic properties of these polymers, one has to average over all allowed
configurations of the polymer of a given number of monomers. The aver-
ages are defined with all configurations considered to be equally likely.
Since the total number of possible configurations grow exponentially fast
with size of the polymer, brute-force exact calculation is possible only for
small polymers. The MC methods allows us to study much larger sizes by
obtaining a representative sample of the set of configurations and estimate
the ensemble averages from the sample average.

The IE algorithm is a simple modification of exact enumeration
algorithm for generating polymers. A good exact enumeration algorithm
generates all possible configurations exactly once.(17) This is ensured by
defining a rule which, given an n-site configuration of a polymer, identifies
uniquely one of these sites as the ‘last added site’. Removing this site must
result in an allowed polymer configuration of (n − 1) sites. The (n − 1)-
site polymer is called the parent of the n-site configuration. We start by
imagining that we have arranged all configurations in a genealogical tree,
whose nodes are the different configurations of the polymer, such that all
polymer configurations of n sites are at level n and are connected to their
parent at level (n−1). Clearly, the tree depends on the rule used to define
parenthood. For example, Fig. 1 shows a genealogical tree for directed
lattice animals on a square lattice for n � 4, using one such choice (see
Appendix A for details). In the actual implementation of the algorithm,
the whole genealogical tree never needs to be stored in full. Parts of the
tree are constructed and erased as we proceed in a depth first search.

As the number of configurations of polymer of size n increases expo-
nentially with n, the time required to construct the genealogical tree up to
level n in the exact enumeration algorithm increases exponentially with n.
The basic idea of the IE algorithm is to decrease this time by randomly
pruning the genealogical tree.

In IE we choose a set of (n−1) real numbers pi (0<pi �1), for i =1
to (n−1). Any bond in the genealogical tree connecting level r to level

74 Sumedha and Dhar

L
ev

el
 2

L
ev

el
 3

L
ev

el
 4

L
ev

el
 1

1

12

2 1
3

123

12
3

1
23

1
2

1
2

3 1
2

3
4

1
2

34
1

23
4

1
234

1
2

4
3

12
3

4
12

34

123
4

1234

12
4

3

4
3

12
12

34
124

3

F
ig

.
1.

A
n

ex
am

pl
e

of
a

ge
ne

al
og

ic
al

tr
ee

.
T

he
nu

m
be

rs
la

be
lli

ng
th

e
si

te
s

in
di

ca
te

th
e

or
de

r
in

w
hi

ch
th

ey
ar

e
ad

de
d

(1
re

pr
es

en
ts

th
e

ro
ot

si
te

).
T

he
tr

ee
sh

ow
n

is
fo

r
di

re
ct

ed
la

tt
ic

e
si

te
an

im
al

s
on

a
sq

ua
re

la
tt

ic
e.

Efficiency of the Incomplete Enumeration Algorithm 75

(r +1) is removed with probability (1−pr) independent of the other bonds.
If a configuration gets disconnected from the root node, automatically
all its descendants are also removed. We make a depth first search of
the pruned genealogical tree up to depth n to determine the different
configurations that remain at level n. We run the algorithm several times to
generate a large sample. The probability of enumeration of a particular r

site configuration in a given run is

�r =
i=r−1∏

i=1

pi. (1)

This is same for all configurations of size r. This ensures that the sample
of configurations obtained is unbiased. As a configuration can occur at most
once in a single MC run, IE samples the population without replacement.

The different runs are mutually uncorrelated. However, the number of
configurations produced within one run varies from run to run, and
different configurations produced in the same run are correlated. Also, the
fraction of runs in which one generates at least one configuration of size n

goes down with increasing n.
In case of SAWs which model linear polymers, there is a natural labelling

scheme in which one just labels the first point of walk by 1, the second by 2
and so on. In case of branched polymers there are several different choices
of labelling possible corresponding to different possible rules of removing a
site from a n-site cluster to generate a (n− 1)-site connected cluster.
We have used the Martin’s labelling scheme(17) for our cluster counting
algorithms. A brief description of this can be found in Appendix A.

2. EFFICIENCY

In general, in MC methods, the time needed to estimate an ensemble
average µ=〈O〉 of some observable O over all clusters of size n averaged
over N independent samples would give estimate as µ∗ =µ±σ/

√
N , where

σ 2 is the variance of O. If correlations are present, the average time
required to estimate µ within the fractional error ε varies as (σ/εµ)2τ ,
where τ is a measure of correlations in the data. For Metropolis evolution,
τ is the auto-correlation time of the observable O. In the case of IE, the
efficiency depends on the average time taken by the MC algorithm to
generate a single run and the degree of correlations present in the different
samples produced in the same run.

76 Sumedha and Dhar

It is difficult to determine the latter exactly for IE. It depends also
on the quantity we want to average. Consider a set of configurations
generated by N independent runs of the IE algorithm. Let the probability
that a single run produces at least one sample be P(n), and the average
number of configurations produced per run be a. Then for large N ,
we will generate approximately Na configurations, which will be made
of approximately P(n)N mutually uncorrelated groups. Thus the average
size of a correlated group is a/P (n). It seems reasonable to measure
the efficiency of the algorithm in terms of the average CPU time required
to produce one independent group of configurations. This overestimates
correlations as this treats all samples produced within one run as fully
correlated.2

Other definitions of efficiency are possible, and may be advantageous in
specific contexts. For example, one may be interested in some asymptotic
properties of the polymer problem, like the average branching number λ,
or the critical exponent θ . In this case, the value of n is not decided
beforehand, and the desired estimate is obtained by suitable extrapolation
of data for different n. We can study average number of descendants
〈Xn〉≈λ(1− θ/n) to estimate λ and θ . Analysis of errors in such quantities
is more complicated, and will not be discussed here.

Let Tn be the average CPU time required to obtain one run which
generates at least one configuration of size n. If τn is the average CPU time
for one MC run, then we have

Tn = τn

P (n)
. (2)

The average CPU time required for one run is estimated easily in terms
of the time taken to add or delete a configuration on the genealogical tree.
We define this to be one unit of CPU time.

The total CPU time for one MC run is proportional to the number of
nodes in the pruned genealogical tree. Let Xj denote the random number
of j -site configurations generated in a single run. The time to visit sites of
the randomly pruned tree up-to depth n is

∑n
j=1 Xj . The CPU time in a

run is then proportional to the number of nodes in the pruned tree. The

2The value of mean radius of gyration of animals of size 50 on the square lattice is 54.9 and
standard deviation σ is 26.9. The average number of samples produced per successful run
was 27.5. If we calculate the standard deviation of average radius of gyration of 104 consec-
utive runs, we get σ ′ =2.8. This would have been σ/100≈0.3 if they were uncorrelated and
4.6 if they were fully correlated. Thus, assuming fully correlated configurations within a run
is not an unreasonable estimate.

Efficiency of the Incomplete Enumeration Algorithm 77

average CPU time per run τn, would be equal to the sum of average values
〈Xj 〉, averaged over all runs.

τn ∝
n∑

j=1

〈Xj 〉. (3)

For linear and branched polymers, the total number of configurations An

of a given size n is known to vary as

An ∼Aλnn−θ (4)

for large n. Here A is a constant, λ is called the growth constant and
θ is a critical exponent. Since each configuration with n sites has a
probability �n (Eq. (1)) of being generated, and there are An total number
of configurations, 〈Xn〉=�nAn, giving

τn =
n∑

j=1

Aj�j . (5)

Since 〈Xn〉 can be directly estimated in IE, we get a way to estimate
the number of configurations 〈Xn〉 by simulations. This can be used to
estimate the λ and θ .

A study of the efficiency of the algorithm is complicated as P(n)

depends on the structure of the genealogical tree, and is difficult to
determine theoretically.

An upper bound on working of these algorithm is the time for exact
enumeration of all the samples, which is exponential in n. Consider the case
in which pi =p for all i. So long as pλ>1, 〈Xn〉 will grow exponentially
with n. As P(n)�1, this implies that Tn increases exponentially with n if
pλ>1. Also, if pλ<1, then P(n) varies as (pλ)n to leading order, but τn

remains finite (τn � τ1).(18) Thus again Tn increases exponentially with n.
These two considerations together imply that a good choice of p is that it
should be approximately equal to 1/λ. However, finding the optimal choice
of {pi} for a given problem is non trivial. We investigate this in Section 3
for some illustrative cases.

3. OPTIMISING THE IE ALGORITHM

3.1. Systems with Uniform Genealogical Tree

The simplest of enumeration problems is the enumeration on a uniform
genealogical tree. For example, random walks which are models for linear

78 Sumedha and Dhar

polymers without self-exclusion correspond to a uniform genealogical tree
of branching number λ. The number of nodes at level n is λn−1.

Consider a uniform genealogical tree with two descendants per node.
In this case number of nodes at level n would be 2n−1. For the choice of
{pi}, the probability of connection of root with level r, denoted by P(r)

follows a simple recursion relation

P(r +1)=2prP (r)−p2
r P

2(r) (6)

with P(1)=1. The average CPU time per run τn is given by

τn =1+
n∑

i=2

2i−1�i. (7)

First we try to find out as to what choice of p′
i s minimises Tn for small n.

For small sizes one can try systematic optimisation. Let us choose n=2.
Then on the binary tree, P(2)=2p1 −p1

2 and τ2 =1+2p1. This gives

T2 = 2p1 +1
2p1 −p1

2
. (8)

Minimising with respect to p1, we get the minimum value of T2 to be
(3+√

5)/2≈2.618 for p1 = (
√

5−1)/2≈0.618.
Similarly, the time (T3) of IE for reaching level 3 from level 1, is given by

T3 = 1+2p1 +4p1p2

2p1(2p2 −p2
2)−p2

1(2p2 −p2
2)

2
. (9)

It is easy to check that T3 in this case takes its minimum value for
p1 =0.534 and p2 =0.618. Similarly for n=4, the minimum occurs at
p1 =0.516, p2 =0.534 and p3 =0.618. For large n, the best choice of pi

tends to 1/2. By optimising till n=30, we find that the best choice of pi is
quite well described by the approximate formula pi ≈ 1

2 (1+0.5/(n− i)2).
For large r, if pr →p∗, Eq. (6) can be approximated by

P(r +1)=2p∗P(r)−p∗2P(r)2. For 2p∗ <1, we get P(r)→ (2p∗)r , and
decreases exponentially with r. For (2p∗)>1, it leads to P ∗(∞)∼ (2p∗ −1).

We have already argued that pi should be close to 1/λ, else the
algorithm is inefficient, Tn varies as exp(n). Consider now the case where
pi = 1

λ
(1+α/im), where α and m are parameters that we can vary to

Efficiency of the Incomplete Enumeration Algorithm 79

find the optimal values. In this case, 〈Xn〉=∏
i (1+α/im), and P(n) is

approximately given by

∂P (n)

∂n
= α

nm
P (n)− 1

λ2
P 2(n) (10)

Then, if m>1, we see that 〈Xn〉 tends to a constant for large n, and τn

is proportional to n. Also, P(n) varies as 1/n, and we have Tn ∼n2.
If m=1, and −1<α <1, then 〈Xn〉 varies as nα, and hence τn ∼nα+1.

Also, Eq. (10) gives P(n)∼A(1−α)nα−1. Interestingly, in the Tn, these
powers cancel and we get Tn = τn/P (n)∼Cαn2. We find that Cα ∼1/(1−α),
hence the best choice of α is α =0.

If m<1, then 〈Xn〉 varies as exp(n1−m), and P(n) varies as n−m, and
hence Tn varies as exp(n1−m) to leading order, thus in this case m<1 leads
to a suboptimal performance of the algorithm.

On a binary tree for pi = 1
2 , we get Tn =n2/4. From systematic

optimisation we saw that there exist a nontrivial optimal value for each
pi which depends on the depth of the genealogical tree to be reached.
This value for uniform binary tree was pi ≈ 1

2 (1+0.5/(n− i)2). But even
with this choice for large n we get Tn ≈n2/4. This result is generalised
straight forwardly to k-node uniform tree. For the choice, pi =1/k ∀i,
we get Tn = (k−1)n2

2k
.

3.2. Systems with Recursively Defined Genealogical Tree

It is necessary to check how nonuniformity of trees can change the
above conclusions. The simplest of nonuniform trees are the recursively
defined trees. The number of branches from a given node still follow a
definite pattern which repeats and depends on the coordination number of
the parent node. We consider some examples

A node with k descendants will be called a k-node. Consider a tree
specified by the rule that the descendants of a 2-node are a 2-node and a
3-node, and the descendants of a 3-node are one 2-node and two 3-nodes.
We specify such a tree by the notation (23,233) tree (Fig.1). If B2(n) and
B3(n) are respectively the number of nodes at level n−1 which have two
and three descendants respectively, then

B2(n)=B2(n−1)+B3(n−1), (11)

B3(n)=B2(n−1)+2B3(n−1). (12)

80 Sumedha and Dhar

From these linear recursion equations it is easy to see that B2(n),
B3(n) and also the total number of nodes at depth n, An, all grow as (λ)n

for large n, where λ= (3+√
5)/2).

We now look at the efficiency of IE on this tree. Take all pi =p. We
define P2(r) and P3(r) as the probabilities that a 2-node and a 3-node,
respectively, are connected to at least one node r levels below. Clearly they
have the following recursions:

1−P2(r +1)= (1−pP2(r))(1−pP3(r)), (13)

1−P3(r +1)= (1−pP2(r))(1−pP3(r))
2 (14)

with P2(1)=P3(1)=1.
For large r, near the fixed point we get P2(r)≈ p

1−p
P3(r). Substituting

in the second equation, we find the linear term vanishes for p = 1/λ

and the difference equation can be approximated by ∂P2/∂r ∼−P 2
2 ,

which implies that P2(n) and P3(n) decay as 1/n for large n. We get
P2(n)≈λ2/(1+λ)n. The total CPU time at p=1/λ is (5+√

5)n/10. It gives
the upper bound on time per independent run to be ((λ−2)(1+λ)/(3λ−2))

n2 ≈0.382n2.
We can similarly analyse the other recursively defined trees. Consider

for example, the tree given by the rule (23,223). We find that growth
constant λ is 2.4142 and for pi =1/λ for IE this gives Tn ≈0.396n2. On
a (33,233) with growth constant 2.732 for pi = 1/λ for IE this gives
Tn = (λ+4)/4(λ+2)n2 ≈0.35n2. It is easy to convince oneself that for all
recursively defined trees we get Tn ∼n2.

It is instructive to see the results of systematic optimisation over {pi}
in case of nonuniform trees. Similar analysis for (23,233) tree (Fig. 1)
between levels 1 and 2 gives p1 =0.618. Similarly optimising T3 between
levels 1 and 3 gives p1 =0.562 and p2 =0.484. An optimisation between
levels 1 and 4 gives the best values of p′

i s to be p1 =0.562, p2 =0.42 and
p3 =0.467. We see that the optimal value of pi in this case depends on n.
By optimising till n=30, where n is the depth of the genealogical tree, we
find that for tree levels away from root and bottom, optimal value of
pi approaches 1/λ with increasing i and the asymptotic behaviour of
algorithm remains the same as long as we choose pi ≈1/λ. The optimal pi

values as a function of i are plotted in Fig. 2. The optimising value of pi

are a bit higher than 1/λ near the two ends i =1 and i =n. This extra
optimisation does not change the Tn ∼Kn2 dependence, and infact does
not change the asymptotic value of K either.

The incomplete enumeration algorithm generates a bond percolation
process on the genealogical tree, where each link is present independently

Efficiency of the Incomplete Enumeration Algorithm 81

p n

n

 0.38

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

0 5 10 15 20 25 30

Fig. 2. Plot of optimum values of pi on a (23,233) tree of depth 30.

with a probability p. We define the percolation threshold pc on the tree to
be such that for all p>pc, there is a nonzero probability that the starting
node belongs to an infinite cluster. For p<pc the probability of connection
between root and level n usually goes down exponentially in n. At pc it is
expected to decrease as a power law in n and for p>pc it takes a finite value
in the limit of n→∞. The pc on a tree is bounded from below by 1/λ.(19)

For the genealogical trees which we discussed, the pc was equal to 1/λ and
the optimal behaviour of the algorithm was achieved for pi ≈1/λ=pc.

3.3. Self-Avoiding Walks

We now consider IE for SAW. For a SAW on a d dimensional lattice,
the number of configurations An ∼λnnγ−1, where λ is a lattice dependent
constant and γ depends only on the dimension. The exponent γ is known
to be 1 for d >4, and γ =43/32 for d =2.(20) The exact value of λ is
known for the hexagonal lattice,(21) and fairly precise numerical estimate,
which matches well with root of a quartic equation with integer coefficients
is known on the square lattice.(22)

The genealogical tree for SAW is not uniform. For example, for rooted
SAW(one end fixed at origin) on a square lattice, the number of different
allowed choices of the nth step for n>1 varies from 0 to 3, depending on the
walk. In this case it is difficult to determine the probabilities of connection
up-to level n analytically but we have estimated P(n) numerically by
simulations. We choose pi =λ−1(1+1/i)1−γ , so that on the average we get
order one configurations of size n per run for large n. With this choice of
pi our numerical simulations show that the probability of reaching level n

82 Sumedha and Dhar

goes down as 1/n and hence whenever level n is reached, on an average
∼n SAWs of size n are generated. This also implies that pc is indeed 1/λ

on the SAW genealogical tree. We did 106 MC simulations and generated
walks up-to size 10,000 on a square lattice. We have plotted Tn in Fig. 3.
Our numerical fit suggests Tn for IE to be (0.42±0.01)n2.

In 3-dimensions λ=4.6839 and γ =1.16(20) and nearly 90% nodes
have coordination number 5. Hence the tree is more uniform than the 2d

case and we get Tn ≈0.43n2 (Fig. 3).
The genealogical tree becomes more and more uniform as we go to

higher dimensions. In general on a d-dimensional hyper-cubic lattice the
maximum branching possible is 2d −1 and in the limit d →∞ the growth
constant has an expansion(20)

λ=2d −1− 1
2d

− 3
(2d)2

−· · · (15)

Hence the dominant branching is 2d −1 and probability of a node
branching into 2d −1 branches increases with dimension, and the lower
branching numbers occur with much smaller frequencies. The probability
of connection to level n is hard to obtain analytically for any d.

In Fig. 3 we have also shown a plot of efficiency of IE in three and four
dimensions for SAW. In few hours one can simulate 105 MC runs for walks
of size 1000 on a Pentium-4 machine. We get Tn ∼n2 for two, three and four
dimensions. This leads us to conclude that the small nonuniformity of the
genealogical tree is unimportant and Tn varies as n2 in all dimensions for SAW.

n

3–d

2–d

4–d

n–2
T

n

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

0 100 200 300 400 500 600 700 800 900 1000

Fig. 3. Tn/n2 of IE as a function of size n for SAW on a 2-, 3- and 4-dimensional hyper
cubic lattice. The lower most graph is for SAW on a square lattice and middle one in 3-d and
the topmost is for 4-d.

Efficiency of the Incomplete Enumeration Algorithm 83

We note that for SAWs, other algorithms like pivot are known to be
more efficient. For pivot algorithm the correlation time for end to end
length varies as nx with x <1 in two dimensions.(9) However, if we want to
study some variable like correlations in the directions of consecutive steps
of the walk, the correlation time will have to satisfy the inequality, Tn �n,
as one would need to update each step about O(1) times to affect the
nearest neighbour correlations.

4. IMPROVED INCOMPLETE ENUMERATION (IIE)

The main limitation of IE is attrition: the probability of generating
n-site configurations in a given MC run goes down with n. One way to
increase the probability of survival is to redistribute weight amongst the
descendants in such a way that while the probability that a particular node
is selected remains same as before, the probability that at least one of the
descendants is chosen is increased. We call this ‘IIE’.

Suppose in the implementation of IE as outlined in Section 1, we come
to a node with degree j . Then in IE, each link is independently deleted with a
probability (1−p), and the probability that all links are deleted is (1−p)j ,
which is nonzero, even if the expected number of descendants of this node
is pj >1. In IIE, the links are not deleted independently. The probability
that any given node is selected remain p, but the probability that at least
one node is selected increases. This is implemented as follow: if there are j

descendants of a node and each link downward is present with probability
p, then we choose Int(pj) edges at random and give them weight one, and
select one of the edge out of the remaining j at random and give it a
weight one with probability frac(pj) and delete all the other edges.

Hence we see that in IIE, though the average probability of selection
of an edge remains p, but it enhances the probability of connection
between two level of the genealogical tree and hence the probability
of success in a given MC run. For example, as will be discussed in
Section 4.1, on a regular tree with p =1/λ, the probability of connection
up-to n levels below in IIE is exactly one whereas it goes as 1/n in IE.

4.1. Systems with Recursively Defined Genealogical Tree

In IIE one redistributes the sum of probabilities of connection from a
node to the next level. On a uniform binary tree yi =2 ∀i and with pi =1/2,
yipi =1 and hence for pi =1/2 with IIE probability of reaching any level n

of the tree after n steps is exactly one and exactly one configuration of any
given size is generated in the process and hence Tn =n. With pi =1/k this
result holds for any k node uniform tree. Clearly pi =1/k is the best choice
in this case, as an absolute lower bound on time Tn of the algorithm is n.

84 Sumedha and Dhar

If we use the improved algorithm for a (23,233) tree, 〈Xn〉 and hence the
average CPU time per run will remain the same. We can also determine the
connection probabilities P2(n) and P3(n). The coupled difference equations
for P2(r) and P3(r) have no cubic term. The recursions are

P2(r +1) = p(P2(r)+P3(r)), (16)

P3(r +1) = p(P2(r)+2P3(r))− 3p −1
3

(2P2(r)P3(r)+P 2
3 (r)), (17)

which at p=1/λ=pc gives P2(n) varying as 1/n for large n. The time per
independent run comes out to be (λ(3−λ)/3)≈ (1/3) times that in incomplete
enumeration. That is, IIE is nearly three times more efficient than IE.

The IIE certainly works better than IE. But, except for the uniform
tree, the difference between IE and IIE is only in the coefficient of n2.
While performance of IIE improves as the genealogical tree becomes more
and more uniform, there is no qualitative difference in the efficiency of IE
and IIE on a recursively defined nonuniform tree.

4.2. IIE for SAW

We studied IIE on a d dimensional hyper-cubic lattice for d =2–10.
IIE enhances the performance of the algorithm by increasing the

probability of connection between root and level n. For SAW on a square
lattice, Fig. 4 shows the probability of connection P(n) for IE and IIE both.
P(n) is roughly 3.5 times bigger for IIE. In two dimensions, Tn is of order
0.12n2 for IIE. In three dimensions the performance is even better and
Tn ≈0.056n2, which is roughly a factor of 7.5 less than the time taken by IE.

In general we find on a d-dimensional hypercube IIE has a efficiency
Tn =adn2 where ad is a decreasing function of dimension for generating
SAWs. Figure 5 shows the plot of IIE for dimensions 2–10. The memory
requirement of the algorithm just increases linearly with system size in all
dimensions and we could perform 105 MC runs for walks up-to sizes 1000
in few hours of computer time on a Pentium-4 machine. We find that ad

decreases as d−2 approximately, i.e. the algorithm performs better with
increasing dimension.

We conclude that for IE and IIE for SAW, Tn =adn2. The probability
of connection between root and level n does not depend on γ . It depends
only on the nonuniformity of the tree. The genealogical tree is more
uniform in higher dimensions and the constant ad depends on dimension.
For IE, the change in ad with dimension is quite insignificant. But ad

can be decreased significantly by redistributing weights. This is a strong

Efficiency of the Incomplete Enumeration Algorithm 85

P(
n)

n

IE
(2.4/n)

IIE (8.56/n)

 0.0001

 0.001

 0.01

 0.1

1

1 10 100 1000 10000

Fig. 4. Probability of getting a walk of size n on a square lattice for IE and IIE.

n

0.003

0.01

0.1

100 200 300 400 500 600 700 800 900 1000

n–2
T

n

d=2

d=3

d=4

d=5

d=6
d=7
d=8
d=10

Fig. 5. Tn/n
2 of IIE versus size n for SAW on a 2–8- and 10-dimensional hyper cubic

lattice.

numerical evidence that the performance is always O(n2) independent of
the dimension and γ for linear polymers.

A further enhancement can be achieved by choosing the pruning only
after looking deeper, but we found that because of the increase both in the
memory requirement and in the CPU time to generate one configuration,
there is no net gain over IIE.

5. LATTICE ANIMALS AND BRANCHED POLYMERS

In this section we will study the IE algorithm for branched polymers.
Since the efficiency of IE is polynomial in n for linear polymers, it seems
plausible that it will be so also for branched polymers. There are two

86 Sumedha and Dhar

important ways in which the genealogical tree for branched polymers
differ from that for linear polymers. There are several equally reasonable,
computationally easy to implement choices of rules to define parentage,
and in all of them the degree of a node is not bounded. The number of
possible descendants of a node is of the order of its perimeter sites
and hence the maximum of the degree of nodes at level n increases
linearly with n. The average number of descendants λ is of O(1), and the
number of nodes with large branching number is exponentially small. But
this makes an important difference in the fluctuations of the number of
animals of a given size generated in a given run.

The structure of genealogical tree for lattice animals is more complex
than for SAWs. We studied the algorithm on genealogical tree obtained by
using Martin’s labelling scheme.(17) We have tried two or three variations of
the priority rules, and our results are insensitive to these changes.

5.1. Lattice Animals on a Binary Tree

We first discuss our results for the animals on a binary tree. This
simple case is more analytically tractable. The generating function of
total number of LA on a binary tree is well known(19) and it is
A(y)=∑∞

0 Ary
r = (1 −√

1−4y)/2y, where Ar is the total number of
animals with r sites. The Ar are the Catalan numbers, which come up in
many other contexts in combinatorics.(23) For large r this gives Ar ∼4r r− 3

2 .
The growth constant λ in this case is 4.

The number of descendants of a node at level r in the genealogical
tree for this problem lies between 2 to (r +1). In this case the genealogical
tree is easily characterised: the root site is a 2−node. A k-node has k

descendants, and the degree of these descendants are k +1, k, . . . ,3,2,
respectively. This is seen as follows: the node corresponds to a branched
polymer with k unblocked perimeter sites, which are ordered by some
priority rule. The mth descendant of this node is a node of degree (k +2−m)

and corresponds to first (m−1) perimeter sites blocked, mth site occupied
and (k −m) allowed for further occupation. Since on a binary tree every
site has two downward neighbours, hence we see that a k-node will give
rise to nodes with k +1, k, . . . ,2 descendants. For example, in Fig. 6, the
top node corresponds to an animal of one site, and has two growth sites. If
first of these two sites is occupied, then the corresponding animal has three
growth sites. If it is blocked it has two growth sites and so on.

The total number of nodes at a level r is equal to Ar . Let Br(k) is the
number of k-nodes at level (r −1). We can determine the distribution of
the branching number. We find that Br(k) satisfy the following relation

Efficiency of the Incomplete Enumeration Algorithm 87

Fig. 6. First few levels of the genealogical tree for lattice animals on a binary tree. Solid cir-
cles represent the occupied sites and crossed circles denote blocked sites on the Bethe lattice.
Dotted lines sketch the underlying Bethe lattice, whereas solid lines represent the bonds present.

Br(k)=Ar−2 −
k−2∑

s=2

Br−1(s). (18)

As r →∞, 1/4 of the nodes at a level have two offsprings and 1/4 of the
total nodes have three offsprings. And level r has exactly one node with
degree (r +1). For k �4, it can be shown that in the asymptotic limit
(r →∞), the fraction of nodes having k offsprings is (k −1)/2k for r �k.

To find the efficiency factor Tn, we have to determine the probability
of connection of root to a level. If P(k, r) is the probability of a node with
k offsprings to be connected to at least one node r levels below it, then
P(k, r) has a recursion

P(k, r +1)=1−
k+1∏

s=2

(1−pP (s, r)), k =2 to ∞ (19)

with initial conditions

P(k,1)=1 ∀k �2 (20)

and p is the probability with which we choose any edge of the tree. P(2, r)

will give the probability of connection of the root to level r on the
genealogical tree. Equation (19) is a nonlinear equation. This equation can
also be written as

88 Sumedha and Dhar

1−P(k, r)= (1−P(k −1, r))(1−pP (k +1, r −1)), k >2. (21)

This equation is also valid for k =2 if we choose the convention that
P(1, r)=pP (2, r −1).

These equations have the following properties:

1. For p<1/4, P(k, r) tends to zero as r tends to infinity exponentially
fast for any fixed k. In fact, if we consider r as a time like variable and k as
space like variable, then P(k, r) has a travelling front solution in this
regime (P(k, r)∼=F(k −vr)).

2. For p =1/4, the velocity of travelling front goes to zero. The
distance moved by the front increases as r1/3 and P(k, r)∼F(k − r1/3).
As F(x)∼ exp(x) for x →−∞, this implies that P(2, r)∼ exp(−cr1/3) for
large x.

3. For p>1/4, as r goes to infinity, P(k) tends to a nontrivial fixed
point function P ∗(k) greater than zero.

This may be seen as follows. The fixed point equation in terms of fixed
point variables P ∗(k) is

1−P ∗(k)= (1−P ∗(k −1))(1−pP ∗(k +1)). (22)

Clearly, P ∗(k)=0 ∀k is a trivial fixed point of this equation. For p>1/4,
there is a nontrivial fixed point with P ∗(k) nonzero monotonic increasing,
with P ∗(k)≈1− (1−p)k for large k. However, a closed form solution for
any p >1/4 is difficult.

On numerically iterating Eq. (19) in r, we find that the equation has a
travelling front solutions for p�1/4 and has nontrivial fixed point for p>1/4.

Equation (22) has two stationary solutions, i.e. P ∗(k)=1∀ k and
P ∗(k)=0∀k. For p�1/4, P ∗(k)=0 is the stable solution while P ∗(k)=1 is
an unstable solution. Our initial conditions given by Eq. (20) are steep.
Starting with these initial conditions, on numerical iteration we find that as
r increases, a front separating stable solution P =0 and unstable solution
P =1 moves in the forward direction. From the translational invariance of
Eq. (19) one expects a running wave solution. We find that the front moves
with a constant velocity and hence, P(k, r) for large k and v must tend to
the asymptotic form

P(k, r)∼F(k −vr). (23)

Efficiency of the Incomplete Enumeration Algorithm 89

P(
k,

r)

k–k(r)*

0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1

10 5 0 5 10

Fig. 7. Plot of P(k, r) versus scaled k − k∗(r), for p = 0.25 and p = 0.25 ± 0.0001 and
r =100,300 and 600. All the nine curves collapse to the same front profile.

We define k∗(r), the width of the front by the equation,

P(k∗(r), r)= 1
2
. (24)

Figure 7 shows a plot of numerically determined P(k, r) with respect
to k −k∗(r) for p near 1/4. Curves for p below, above and at p =1/4 all
collapse on the same line. Actually, a travelling front for P(k, r) as defined
by Eq. (21) exists for all k, −∞<k <∞, if we take boundary conditions
such that P(−∞, r)=0 and P(∞, r)=1.

At p =1/4, the velocity of the travelling front is zero. If we plot
P(k +1, r) as a function of P(k, r), we find that as r increases the graph
approaches a limiting form. Thus for the asymptotic wavefront, P(k +1, r)

is a single valued nonlinear function of P(k, r). We have plotted these
values for different r in Fig. 8 and they all are very close and seem to lie
on the same curve. Hence if we start from a point on this curve and iterate
the fixed point equation (22) with p =1/4, we generate a travelling front.
We have not been able to deduce the functional form of this function,
which corresponds to a first order difference equation for P ∗(k) from the
second-order equation (22). Equation (22) turns out to be a stiff equation
and one has to be careful while iterating it in increasing k direction. We
iterated Eq. (22) starting with different sets of values of P ∗(k +1) and
P ∗(k) given by Fig. 8 and found the equation yields a travelling front same
as the one shown in Fig. 7.

90 Sumedha and Dhar

P(
k+

1)

P(k)

0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 8. Plot of P(k + 1) as a function of P(k) at p = 1/4 for r = 25000,26000,28000 and
30000. All the curves are very close and approach a limiting form with increasing r. The
dotted line is just the line x =y.

We could not solve the full nonlinear difference equation (19). Keeping
only the terms linear in P will give an upper-bound on P(k, r +1), i.e.

P(k, r +1)�p

k+1∑

s=2

P(s, r). (25)

We can represent this set of equations in matrix form also. Hence if
Pr represents the infinite column array with kth entry being P(k, r) then

Pr �prMrP0, (26)

where M is the transition matrix. If λm is the largest eigenvalue of M then
for p <1/λm, in the limit of r →∞, P∗ will be 0, i.e. P ∗(k)=0 for all k,
and for p <1/λm.

The elements Mi,j of the transition matrix M are such that, Mi,j =1
for j � (i +1) and 0 otherwise. If we truncate M beyond n×n (Mn), then
the determinant Dn of Mn comes out to be

Dn =A(λ)

[
1

xn+1
1

− 1

xn+1
2

]
(27)

with x1, x2 = −1
2 ±

√
1− 4

λ
, and A(λ)=1/

√
1− 4

λ
is a coefficient which does

not depend on n. Then equating Dn =0 in the n→∞ limit gives λm =4. This

Efficiency of the Incomplete Enumeration Algorithm 91

implies that for p<1/4, P(k, r) will decay exponentially with increasing r

and Eq. (25) will work well. Hence, by definition percolation threshold pc

of this tree is 1/4.
The linearised recursion can be solved explicitly, and we get,

P(k, r)=pr
[k +2r −1]

[k + r −1]
[r +1]

(28)

which for large r gives

P(k, r)∼ 1
4
√

πr
exp

[
ln 2

(
k + r

ln(4p)

ln(2)

)]
. (29)

If we assume a travelling front solution of kind P(k, r)∝ exp(λ(k −vr))

to be valid in the tail of the distribution, then substituting in linearised
recursion (Eq. (25)), for a given p we get a spectrum of travelling wave like
solutions parametrised by λ with the velocity v of the front given by

v = 1
λ

ln
1− exp(−λ)

p
−1. (30)

In this case, it is known that the front actually chooses a unique velocity
given by minimum of right-hand side of Eq. (30) with respect to λ.(24) The
front velocity is given by

v∗ = 2exp(−λ∗)−1
1− exp(−λ∗)

, (31)

where λ∗ is the solution of the transcendental equation

−1
λ∗ ln

1− exp(−λ∗)
p

+ exp(−λ∗)
1− exp(−λ∗)

=0. (32)

Near p =1/4, we can take v ≈ ln(4p)/ln (2) and λ≈ ln2. Travelling
front solutions have been found in a large variety of problems in physics.(25)

The linearisation of Eq. (19) would be valid only for p �1/4 and
k <ko(r). Beyond that, linear solution will grow beyond one whereas the
solution of the full nonlinear equation will saturate to 1. Here ko(r) is the
value of k at which P(k, r) given by Eq. (29) becomes of O(1) and is equal to

ko(r)= −rln(4p)

ln2
, for p <

1
4

(33)

92 Sumedha and Dhar

At p = 1/4, the asymptotic velocity of the front is zero and the
front advances as a sub linear power of r. This is the critical point of
the percolation on this tree, and Eq. (29) gives a algebraic decaying
solution for sufficiently small k. This is only an upper bound to the actual
value. On numerically iterating Eq. (19) for r up to order 104, we found
unexpectedly that it decays as a stretched exponential in r.

The fixed point equation as given by Eq. (22) is again a nonlinear
equation. To find the dependence of probability of connection of root,
P(2, r), on the width of the front we solved the linearised fixed point
equation. On solving, we find that it goes as 2−k∗(r) for large r, where k∗(r)
is the width of the distribution. Hence in general, P(2, r)∼ exp(−ak∗(r)).

We further studied the width k∗(r) of the front as a function of r

for different values of p. At p = 1/4 we found k∗(r)∼ r1/3. Figure 9
shows a plot of k∗(r) as a function of r1/3. For p =1/4, the plot is
a straight line. This implies that P(2, r)∼ exp(−cr1/3) at p =1/4. For
p <1/4, k∗(r) varies linearly with r and tends to a constant for p >1/4.
We can directly iterate Eq. (19). In Fig. 10 we have plotted − log(P (2, r))

as a function of r1/3 which comes out to be a straight line. Figures 9 and
10 are strong numerical evidence that the probability of connection goes as
exp(−crα) for branched polymers on binary tree. Our numerical studies
give α =0.333±0.005 and c=2.47±0.01.

r1/3

k(
r)

*

0.26
0.27

0.253
0.252

0.251

0.240.23 0.247 0.248
0.249

0.25

0

 20

 40

 60

 80

 100

 120

0 5 10 15 20 25

Fig. 9. The width k∗(r) of the travelling front as a function of r1/3 for different values of
p. The value of p increases from left to right. Curves of left of p = 1/4 are for p < 1/4 and
the ones on right are for p>1/4. For p=1/4 the graph approaches a straight line as r →∞.

Efficiency of the Incomplete Enumeration Algorithm 93

r1/3

–l
og

(P
(2

,r
))

0

5

 10

 15

 20

 25

 30

 35

 40

 45

 50

0 2 4 6 8 10 12 14 16 18 20

Fig. 10. Thick line is the plot of −log(P (2, r)) as a function of r1/3, when p is taken to be
1/4. The dotted line is a straight line of slope 2.47.

5.2. Heuristic Argument for the Stretched Exponential Behaviour

of P (n) at p =1/4

We now present a heuristic argument to understand why k∗ varies as
r1/3 at pc. Let us consider a genealogical tree of LA on a binary tree, in
which nodes with more than k descendants are deleted. We denote the
probability that the maximum degree of a node connected to root down to
level r is km, by H2(km) and the probability that a km node is connected to
at least one node r level down on the truncated genealogical tree by Jkm(r).

Now on a truncated tree, transition matrix M is no longer infinite. It
is now a km ×km matrix with Mi,j =1 for j � (i +1) and 0 otherwise. Here
Mi,j represents the ith row and j th column entry of M, and we find the
critical value of p which is just inverse of the largest eigenvalue of M to be
a function of km and is equal to

pc(km)= 1
4

(
1+ tan2

(
π

km +1

))
. (34)

For p<pc(km), Jkm(r) decays exponentially with r. In large r limit it
is given by

Jkm(r)∼ exp(r log(p/pc(km))). (35)

At p =1/4, we get Jkm(r)∼ exp(−br/k2
m), where b is a constant.

94 Sumedha and Dhar

It is easy to get a lower bound on H2(km), as a order km node occurs first
time at level km and probability of connection of root to this node is pkm . Hence

H2(km)�pkm =4−km. (36)

Hence, since p = 1/4 is less than pc(km) for any finite km,
Jkm(r)∼ exp(−br/k2

m), where b=π2. Since H2(km)� exp(−apkm), for large
r we get

P(2, r)�max
km

[
exp

(
−apkm − br

k2
m

)]
(37)

which gives

P [2, r]� exp(−cr1/3), (38)

where c= 3
2 (2ba2

p)
1
3 . If we take H2(km) to be as given by Eq. (36), we

get an lower bound on P(2, r). Taking b=π2 and ap = log 4 we get
c= 3

2 (2π2log2 4)1/3 =5.04. This should be compared with the numerical
estimate c∼=2.47.

Thus our numerical simulations and qualitative arguments show that
probability of connection goes down as a stretched exponential at p=1/4,
the pc of the genealogical tree of LA on binary tree as opposed to r−1

decay for linear polymers. So if we chose pi =1/4 ∀i, then 〈Xr 〉∼ r−3/2 and
hence the average computer time to generate one statistically independent
sample of size r, Tr would go as exp(cr1/3) to leading order.

Clearly the algorithm is not working well and one would like to
enhance its efficiency if possible. We tried to study the algorithm by
choosing pi such that its asymptotic value is 1/4. We chose pi = 1

4 (1+ x
im

)

and studied Tr as a function of x and m.
As argued earlier, taking m= 1, we can change τr and P(r) by

multiplicative factors which are powers of r. This will not make much of a
difference, as the leading dependence remains exp(cr1/3). Using m<1,
seems to be more interesting.

For m< 1, the average CPU time per MC run would vary as
exp(xr1−m). In case of linear polymers, we saw that time complexity of the
algorithm for m=1 for any x is polynomial in r. Hence, m<1 was clearly
a bad choice. But in the case of LA, this increase in numerator is exactly
cancelled by a corresponding increase in P(r). For 2/3�m<1, τr increases
as exp(xr1−m) and P(r) varies as exp(−cr1/3 +xr1−m) to leading order for
large r. These cancel to give Tr ∼ exp(cr1/3) independent of m. To monitor

Efficiency of the Incomplete Enumeration Algorithm 95

x

lo
gT

r

 m=1

m=5/6

m =2/3

 22

 22.5

 23

 23.5

 24

 24.5

 25

 25.5

 26

0 0.5 1 1.5 2

Fig. 11. Plot of logTn for m=2/3,5/6 and 1 as a function of x for n=1000.

the behaviour of various prefactors, we study this numerically. Figure 11
shows plot of Tr for r =1000, for m=2/3,5/6 and 1 as a function of x.
For 1�a �2/3, to leading order Tr goes as exp(cr1/3), but there exist a
nontrivial value of x at which Tr is minimum for a given m. If we look at
Tr at best value of x for m=2/3,5/6 and 1, we find that as r increases the
difference is not significant.

Hence we conclude that to leading order, Tr ∼ exp(cr1/3), for the best
choice of p. For all 2/3�m�1, there exist a range of x for which the time
complexity of the algorithm will remain qualitatively the same.

5.3. Lattice Animals on a 2-Dimensional Square Lattice

We also studied the efficiency for LA on a square lattice. From exact
series enumeration the Ar is known to vary as λr with λ≈4.06257.(26) In
this case also the number of offsprings a node at level r can have is
O(r) and the genealogical tree in this case though more complicated, is
qualitatively similar. Numerically, we find that the probability distribution
of number of descendants k (of a randomly chosen node) has a maximum
at k =4, with Prob(k =4)≈1/4. We enumerated lattice animals up-to sizes
1000 using IE with 106 MC runs. It took time of order one day on a
Pentium-4 machine. With IIE we generated samples of size 2000 with
2×106 MC runs in 2–3 days time. These sizes are of same order as those
produced using the cut and paste type algorithms.

In this case, we find that P(r) has the stretched exponential form
P(n)∼ exp(−cnα), with α ≈0.4 for both IE and IIE. Figure 12 shows

96 Sumedha and Dhar

r0.4

IE

IIE

–l
og

(P
(r

))

0

2

4

6

8

 10

 12

 14

0 2 4 6 8 10 12 14 16 18 20 22

Fig. 12. Plot of −log(P (2, r)) versus r0.4 for lattice animals on a square lattice with IE and
IIE.

r0.32

–l
og

(P
(r

))

0

2

4

6

8

 10

 12

 14

0 2 4 6 8 10 12

Fig. 13. Plot of −log(P (r)) versus r0.32 for directed animals with IIE.

[−logP(r)] varies approximately linearly with r0.4. We also studied the directed
LA on a square lattice. In this case we find that, α =0.32±0.02 (Fig. 13).

6. DISCUSSION

We find the efficiency of IE to be different for linear and branched
polymers. This is due to the fact that genealogical tree for the latter is
much more nonuniform.

Efficiency of the Incomplete Enumeration Algorithm 97

For SAWs, in any dimension, the time to generate an independent
sample of n steps Tn ∼adn2, independent of dimension for both IE and
IIE. For IE there is no significant change in ad with dimension. But for IIE
ad ∼d−2. In the limiting case of SAW on binary tree Tn =n for IIE.

For branched polymers Tn increases as exp(cnα) with 0<α <1 in all
dimensions for both IE and IIE. Redistributing weight does not change the
value of α. The IIE works better than IE, but the difference is only in the
coefficient c. The exponent α depends weakly on the dimension, its relation
to the usually studied exponents of the branched polymer problem, e.g. θ ,
ν is not clear at present.

As discussed earlier, the genealogical tree for cluster enumeration is not
unique and one might argue that Martin’s scheme is not the optimal choice.
We tried to generate the genealogical tree using some variations of this rule,
but we did not find any significant change in efficiency of the algorithm.

For branched polymers, the degree of a node in the genealogical tree
is not bounded, and the maximum degree increases with depth of the
genealogical tree. However, the fractional number of nodes with high degree
is very small. For genealogical tree corresponding to animals on a binary
tree we find the fractional number of k-nodes goes down exponentially
with k for large k (Eq. (18)). Similar, behaviour was observed for branched
polymers and directed branched polymers on a square lattice numerically.
It is surprising that even an exponentially rare distribution of nodes with
large degree seems to be enough to change the behaviour of efficiency of
the algorithm on the tree.

In the case of branched polymers, we found that the Tn for IE varies as
exp(cnα) with 0 < α < 1. While this is not very good, one can find problems
for which IE’s performance is even worse with α =1. As an example, consider
SAWs on a disordered lattice, obtained by removing a fraction (1−u) of bonds
at random from a square lattice. It is known that the average number of SAWs
of length n varies as (uλ)n,(27) where λ is the growth constant of the SAWs
on the same lattice with u= 1. Hence the growth constant of the correspond-
ing genealogical tree would also be uλ. Now if we consider a square lattice,
the λ ≈ 2.638 and the bond percolation threshold is 1/2. For 1/λ < u < 1/2,
all clusters would be finite with probability 1, and the probability that cluster
contains n sites would decrease exponentially with n. In this case, IE will be
inefficient and even for best choice, Tn will vary as exp(cn).

One could argue that IE is a rather inefficient algorithm, which gives
reasonable performance only for a small selected set of problems. We do
not think so. In fact, the causes that make IE inefficient are also operative
in the much larger class of genetic type algorithms. The high degree of
correlations between different samples generated is a common feature of
many of these algorithms which employ pruning and enrichment. For

98 Sumedha and Dhar

example, one could expect a similar behaviour to occur in the Berreti–Sokal
algorithm,(10) for branched polymers. The correlations arise because in all
such ‘evolutionary’ type algorithms different samples generated often share
a common ancestor in the past. Whether our results can be generalised
to a larger class of PERM type algorithms seems to be an interesting
question for further study.

APPENDIX A

As discussed in Section 1, to enumerate all allowed configurations on
a computer, one need a good exact enumeration algorithm which would
generate all possible configurations exactly once, without needing to refer
to what has been generated previously. Hence, one has to label the n-point
configurations such that for any n-point configuration the labelling is
unique and on removing the last added site we must get an allowed
(n−1)-point configuration. For the self avoiding walks this can be easily
achieved by labelling the first point of walk as one, the second two, and so
on. But usually such natural choice of labelling doesn’t exist for most
problems. For lattice trees and animals, Martin discusses this in detail.(17)

Here we describe briefly his algorithm for labelling a n-cluster.

• Choose a rule for ordering the neighbours of any given site. For
example, for LA on a square lattice (Fig.1), we chose the rule that the
upward neighbour is labelled before the right neighbour. For LA on the
binary tree we choose left neighbour before the right neighbour. (Fig. 6).

• We label the root as one and its neighbours are labelled 2,3,4 . . .

in the order according to the priority rule.

• When all points adjacent to point 1 have been labelled, label any
still unlabelled points adjacent to point 2 according to the priority rule and
then of point 3 and so on. This labeling hence induces a tree structure on
the cluster which is the genealogical tree.

The labelling described above is just one way of labelling the
configurations. One can invent many other labelling schemes, which would
give rise to different genealogical tree. But we find that the qualitative
nature genealogical tree does not depend on the rules of labelling.

ACKNOWLEDGMENTS

We thank M.Barma for a careful reading of the manuscript, and the
referee for many helpful remarks, which have helped improve our presentation.

Efficiency of the Incomplete Enumeration Algorithm 99

REFERENCES

1. A. D. Sokal, Monte-Carlo Methods for the Self Avoiding Walk 1995, in Monte Carlo
and Molecular Dynamics Simulations in Polymer Science, K. Binder, ed. Oxford Univer-
sity Press New York 47–124, hep-lat/9405016.

2. M. Doi and S. F. Edwards, The Theroy of Polymer Dynamics (Clarendon Press, Oxford,
1986).

3. F. T. Wall and F. Mandel, Macromolecular dimensions obtained by an efficient Monte
Carlo method without sample attrition, J. Chem. Phys. 63:4592–4595 (1975).

4. N. Madras and A. D. Sokal, The pivot algorithm: A highly efficient Monte Carlo
Method for the self-avoiding walk, J. Stat. Phys. 50:109 (1988).

5. S. Caracciolo, A. Pelissetto, and A. D. Sokal, A nonlocal Monte Carlo algorithm for
self-avoiding walks with fixed endpoints, J. Stat. Phys. 60:1 (1990).

6. F. T. Wall and J. J. Erpenbeck, New method for the statistical computation of polymer
dimensions, J. Chem. Phys. 30:634–637 (1959).

7. P. Grassberger and W. Nadler, “Go with the winners – Simulations, cond-
mat/0010265”, Proc. der Heraeus-Ferienschule “‘Vom Billiardtisch bis Monte Carlo:
Spielfelder der statistischen Physik”’, (Chemnitz, October 2000).

8. E. J. Janse van Rensburg, S. G. Whittington, and N. Madras, The pivot algorithm and
polygons: Results on the FCC lattice, J. Phys. A 23:1589 (1990).

9. T. Kennedy, A faster implementation of the pivot algorithm for self-avoiding walks,
J. Stat. Phys. 106:407–429 (2002).

10. A. Berreti and A. D. Sokal, New Monte Carlo method for self-avoiding walk, J. Stat.
Phys. 40:483 (1985).

11. E. J. Janse van Rensburg, and N. Madras, A nonlocal Monte Carlo algorithm for lat-
tice trees, J. Phys. A:Math. Gen. 25:303–333 (1992); Metropolis Monte Carlo simulation
of lattice animals, J. Phys. A:Math. Gen. 30:8035-8066 (1997); E. J. Janse van Rensburg
and A. Rechnitzer, High precision canonical Monte Carlo determination of the growth
constant of square lattice trees, Phys. Rev E 67:0361161–0361169 (2003).

12. S. You and E. J. Janse van Rensburg, Adsorbing trees in two dimensions: A Monte
Carlo study, Phys. Rev. E 64:0461011–0461019 (2001).

13. H. P. Hsu, W. Nadler, and P. Grassberger, Simulations of lattice animals and trees,
cond-mat/0408061 (2004).

14. S. Redner and P. J. Reynolds, Position-space renormalisation group for isolated polymer
chains, J. Phys. A 14:2679 (1981).

15. D. Dhar and P. M. Lam, A Monte Carlo method for series expansions, J. Phys. A:
Math. Gen. 19:L1057–1061 (1986).

16. P. M. Lam, Monte Carlo study of lattice animals in d dimensions, Phys. Rev. A
34:2339–2345 (1986).

17. J. L. Martin, Computer Techniques for Evaluating Lattice Constants, Phase Transitions
and Critical Phenomena, C. Domb and O. M. Green, eds. (vol. 3, Academic Press
London, 1983).

18. T. E. Harris, Theory of Branching Processes, (Springer-Verlag, Berlin, 1963).
19. G. Grimmett, Percolation (Springer-Verlag, Berlin, 1989).
20. N. Madras and G. Slade, The Self Avoiding Walk (Birkhauser Boston, 1993).
21. B. Nienhuis, Exact critical point and critical exponents of O(n) models in two dimen-

sions, Phys. Rev. Letts. 49:1062 (1982).
22. I. Jensen and A. J. Guttmann, Self-avoiding polygons on the square lattice, cond-

mat/9905291, (1999).

100 Sumedha and Dhar

23. R. P. Stanley, Enumerative Combinatorics, (Vol.2, Chapter 6, Cambridge University
Press, Cambridge, New York, 1999).

24. W. V. Saarloos, Front propagation into unstable states, Phys. Rep. 386:29 (2003).
25. E. Brunet and B. Derrida, Shift in the velocity of a front due to a cutoff, Phys. Rev. E

56:2597 (1997); S. N. Majumdar and P. L. Kaprivsky, Extreme value statistics and trav-
elling fronts: Various applications, Physica A 318:161 (2003).

26. I. Jensen, Enumerations of lattice animals and trees, J. Stat. Phys. 102:865–881 (2001).
27. K. Barat and B. K. Chakrabarti, Statistics of self-avoiding walks on random lattices,

Phys. Rep. 258:377 (1995).

